Ultrassonografia - Princípios Físicos

CBR Responde

•

- a) Permanecer inalterada
- b) Diminuir
- c) Dobrar
- d) Aumentar
- e) Multiplicar
- 2) A zona focal do feixe sonoro está diretamente relacionado com que tipo de resolução:
 - a) Axial
 - b) Elevação
 - c) Contraste
 - d) Lateral
 - e) Nenhuma delas
- 3) Quanto a física do ultrassom é correto afirmar:
 - a) Uma maior penetração do feixe sonoro no tecido é obtida com frequências mais altas
 - b) Quando a onda sonora muda de meio, sua velocidade e o comprimento de onda ficam inalteradas
 - c) A impedância acústica é a relação entre a frequência do som e a densidade do material
 - d) As células sanguíneas em movimento produzem as variações que produzem o efeito Doppler
 - e) Frequência de Repetição de Pulsos PRF é a velocidade com a qual os pulsos são emitidos por minuto

1

Volume 15 – Ultrassonografia Ginecológica e Obstétrica

BRUNA SCHMITZ SERPA | EDUARDO ALVES FERREIRA MARTINS

Ultrassonografia - Princípios Físicos

- 4) Quanto aos artefatos é correto afirmar :
 - a) O reforço acústico posterior ocorre quando há forte absorção das ondas sonoras ao atravessar meio liquido.
 - b) A sombra acústica posterior ocorre devido a ausência de reflexão dos ecos e ausência de absorção.
 - c) Artefato anular profundo ocorre onde múltiplas bolhas de gás absorvem energia acústica e produz uma onda contínua e faz ressonar produzindo ecos brilhantes.
 - **d)** Erros de velocidade de propagação é quando os ecos podem aparecer na mesma profundidade construindo erros em que a imagem aparece dividida ou cortada.
 - e) Reverberação acontece com superfícies de impedância semelhantes que provocam reflexão incompleta da onda
- 5) Quanto ao Doppler é correto afirmar:
 - a) Doppler continuo se caracteriza por usar um único cristal piezoeletrico.
 - b) No Doppler pulsado são usados dois cristais, um para emitir o som e outro como receptor.
 - c) O Doppler de amplitude ou Power Doppler utiliza a amplitude do sinal e é menos dependente do ângulo
 - d) O Doppler colorido não fornece a direção do fluxo sanguíneo.
 - e) A angulação entre o feixe de ultrassom e o vaso estudado deve ser no mínimo 60 graus para se obter um exame confiável.

Volume 15 – Ultrassonografia Ginecológica e Obstétrica

BRUNA SCHMITZ SERPA | EDUARDO ALVES FERREIRA MARTINS

Ultrassonografia - Princípios Físicos

Respostas

1) Alternativa A

A velocidade da propagação de uma onda sonora é determinada pela rigidez e densidade do meio. Portanto, a alteração da frequência não afeta a velocidade de propagação.

2) Alternativa D

A resolução lateral está diretamente relacionada com o diâmetro do feixe acústico e depende da distância entre os cristais individuais e não da distância entre os objetos visualizados. A resolução axial não varia com a profundidade, depende da duração dos pulsos emitidos.

3) Alternativa D

As células sanguíneas em movimento produzem as variações que produzem o efeito Doppler

Uma maior penetração do feixe sonoro no tecido é obtida com frequências mais baixas

Quando a onda sonora muda de meio, sua velocidade e o comprimento de onda mudam

A impedância acústica é a relação entre a velocidade do som e a densidade do material

Frequência de Repetição de Pulsos - PRF – é a frequência com a qual os pulsos são emitidos por segundo.

4) Alternativa C.

Artefato anular profundo— ocorre onde múltiplas bolhas de gás absorvem energia acústica e produz uma onda contínua (devido ao líquido que estão entre as bolhas) e faz ressonar produzindo ecos brilhantes que são interpretadas pelo equipamento como de estruturas mais profundas. Como exemplo temos o gás intestinal, abcessos com gás, pneumoperitônio e etc. Também acontece com metais

Reforço acústico posterior: Os líquidos transmitem o som sem causar absorção perceptível na leitura do aparelho, e as ondas sonoras que alcançam o final do conteúdo líquido tem a compensação acumulada, provocando como se fosse o aumento do ganho nas regiões posteriores

Sombra acústica posterior: As estruturas sólidas ou calcificadas têm uma textura muito maior que os tecidos moles, provocando uma grande reflexão dos ecos. Os ecos que continuariam seu trajeto também sofrem grande absorção, impedindo a continuação do seu trajeto.

Erros de velocidade de propagação (deslocamento) - os ecos podem aparecer em profundidades diferentes do real construindo erros em que a imagem aparece dividida ou cortada

Reverberação: Superfícies com grande diferença de impedância acústica, como os gases, provocam reflexão completa da onda com velocidade maior. As ondas que voltam ao transdutor refletem novamente, e assim sucessivamente.

1

Volume 15 – Ultrassonografia Ginecológica e Obstétrica

BRUNA SCHMITZ SERPA | EDUARDO ALVES FERREIRA MARTINS

Ultrassonografia - Princípios Físicos

5) Alternativa C

Doppler de amplitude ou Power Doppler. Utiliza a amplitude do sinal do Doppler para detectar o movimento sanguíneo. É até cinco vezes mais sensível que o Doppler colorido para a detecção e demonstração do fluxo sanguíneo, e é menos dependente do ângulo de varredura para obtenção de uma boa imagem, assim, pode ser usado para identificar os vasos sanguíneos menores de baixas velocidades de forma mais confiável.

Doppler contínuo - são usados dois cristais piezoelétricos, um para emitir os pulsos e outro para receber os ecos desses pulsos (são muito utilizados em monitorização dos batimentos cardíacos do feto – sonar Doppler).

Doppler pulsado – no conjunto dos cristais cada cristal serve como emissor e também como receptor.

Doppler colorido - fornece informações sobre a direção do fluxo em tempo real.

A angulação entre o feixe de ultrassom e o vaso que está sendo examinado deve ser no máximo de 60°.